资源类型

期刊论文 26

年份

2023 1

2021 1

2019 3

2017 1

2011 4

2010 3

2009 4

2008 5

2007 2

2003 1

2000 1

展开 ︾

关键词

9 + 2结构 1

Preissmann格式 1

人工纤毛 1

仿生系统 1

低雷诺数 1

动、静叶相互作用 1

动力特性 1

可压缩流 1

叶轮机 1

合理体系 1

壁面律 1

局部等价雷诺数 1

平板流动 1

建模 1

扰动涡方法 1

水质模型 1

流量分配 1

液体调速离合器 1

渠网及河网 1

展开 ︾

检索范围:

排序: 展示方式:

Numerical analysis of aerodynamic noise radiated from cross flow fan

CHEN Anbang, LI Song, HUANG Dongtao

《能源前沿(英文)》 2008年 第2卷 第4期   页码 443-447 doi: 10.1007/s11708-008-0063-9

摘要: The flow field in a cross flow fan was simulated by solving the 2-D unsteady Reynolds-averaged Navier-Stokes equations. The calculated pressure fluctuations of the blades, the vortex wall, and the rear wall were then used as noise sources to calculate the sound field. The Ffowcs Williams-Hawkings (FW-H) equation was employed to predict the noise field caused by these sources. The predictions show that the rear wall and the vortex wall sources contribute significantly to the total noise and that both the predicted aerodynamic performance and noise agree well with the experimental results.

关键词: predicted aerodynamic     Williams-Hawkings     calculated pressure     aerodynamic performance     unsteady Reynolds-averaged    

URANS simulation of the turbulent flow in tight lattice bundle

Yiqi YU, Yanhua YANG

《能源前沿(英文)》 2011年 第5卷 第4期   页码 404-411 doi: 10.1007/s11708-011-0165-7

摘要: The flow structure in tight lattice is still of great interest to nuclear industry. An accurate prediction of flow parameter in subchannels of tight lattice is likable. Unsteady Reynolds averaged Navier Stokes (URANS) is a promising approach to achieve this goal. The implementation of URANS approach will be validated by comparing computational results with the experimental data of Krauss. In this paper, the turbulent flow with different Reynolds number (5000–215000) and different pitch-to-diameter( / ) (1.005–1.2) are simulated with computational fluid dynamics (CFD) code CFX12. The effects of the Reynolds number and the bundle geometry ( / ) on wall shear stress, turbulent kinetic energy, turbulent mixing and large scale coherent structure in tight lattice are analyzed in details. It is hoped that the present work will contribute to the understanding of these important flow phenomena and facilitate the prediction and design of rod bundles.

关键词: tight rod bundle     flow structure     unsteady Reynolds averaged Navier Stokes (URANS)    

Optimum design of a channel roughened by dimples to improve cooling performance

Abdus SAMAD, Ki-Don LEE, Kwang-Yong KIM, Jin-Hyuk KIM,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 262-268 doi: 10.1007/s11708-010-0012-2

摘要: Staggered arrays of dimples imprinted on opposite surfaces of an internal flow channel have been formulated numerically to enhance turbulent heat transfer compromising with pressure drop. The channel is simulated with the help of three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis. Three non-dimensional design variables based on dimple size and channel dimensions and two objectives related to heat transfer and pressure drag have been considered for shape optimization. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective and polynomial response surface approximation (RSA) coupling with a gradient based search algorithm has been implemented as optimization technique. By the present effort, heat transfer rate is increased much higher than pressure drop and the thermal performance also has shown improvement for the optimum design as compared to the reference one. The optimum design produces lower channel height, wider dimple spacing, and deeper dimple as compared to the reference one.

关键词: Staggered     three-dimensional Reynolds-averaged     multi-objective optimization     reference     transfer    

Numerical analysis of 3-D unsteady flow in a vaneless counter-rotating turbine

ZHAO Qingjun, WANG Huishe, ZHAO Xiaolu, XU Jianzhong

《能源前沿(英文)》 2007年 第1卷 第3期   页码 352-358 doi: 10.1007/s11708-007-0053-3

摘要: To reveal the unsteady flow characteristics of a vaneless counter-rotating turbine (VCRT), a three-dimensional, viscous, unsteady computational fluid dynamics (CFD) analysis was performed. The results show that unsteady simulation is superior to steady simulation because more flow characteristics can be obtained. The unsteady effects in upstream airfoil rows are weaker than those in downstream airfoil rows in the VCRT. The static pressure distribution along the span in the pressure surface of a high pressure turbine stator is more uniform than that in the suction surface. The static pressure distributions along the span in the pressure surfaces and the suction surfaces of a high pressure turbine rotor and a low pressure turbine rotor are all uneven. The numerical results also indicate that the load of a high pressure turbine rotor will increase with the increase of the span. The deviation is very big between the direction of air flow at the outlet of a high pressure turbine rotor and the axial direction. A similar result can also be obtained in the outlet of a low pressure turbine rotor. This means that the specific work of a high pressure turbine rotor and a low pressure turbine rotor is big enough to reach the design objectives.

关键词: unsteady flow     three-dimensional     pressure distribution     similar result     unsteady simulation    

Measurement and analysis of tip clearance unsteady flow spectrum in axial-flow fan rotor

LIU Bo, HOU Weimin, MA Changyou, WANG Yangang, ZHOU Qiang

《能源前沿(英文)》 2008年 第2卷 第4期   页码 448-452 doi: 10.1007/s11708-008-0088-0

摘要: The dynamic pressure measurement device and test technology are described in this study. The tip clearance unsteady flow development from the inlet to the outlet of an axial-flow rotor was revealed by analyzing pressure frequency spectrum acquired from measuring the unsteady pressure field of the tip endwall. The experiment provides test basis for thoroughly understanding the tip clearance unsteady flow and building interaction models of tip clearance flow and main flow.

关键词: development     endwall     unsteady pressure     pressure measurement     experiment    

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Thermodynamic models and energy distribution of single-phase heated surface in a boiler under unsteady

Xiyan GUO, Yongping YANG

《能源前沿(英文)》 2011年 第5卷 第1期   页码 69-74 doi: 10.1007/s11708-010-0117-7

摘要: A coal-fired power unit frequently operates under unsteady conditions; thus, in order to acquire scientific energy analysis of the unit, thermodynamic analysis of a single-phase heated surface in a boiler under such conditions requires investigation. Processes are analyzed, and distributions of energy and exergy are qualitatively revealed. Models for energy analysis, entropy analysis, and exergy analysis of control volumes and irreversible heat transfer processes are established. Taking the low-temperature superheater of a 610 t/h-boiler as an example, the distribution of energy, entropy production, and exergy is depicted quantitatively, and the results are analyzed.

关键词: thermodynamic model     energy distribution     boiler     unsteady conditions    

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 506-514 doi: 10.1007/s11705-010-0508-7

摘要: The Speziale, Sarkar and Gatski Reynolds Stress Model (SSG RSM) is utilized to simulate the fluid dynamics in a full baffled stirred tank with a Rushton turbine impeller. Four levels of grid resolutions are chosen to determine an optimised number of grids for further simulations. CFD model data in terms of the flow field, trailing vortex, and the power number are compared with published experimental results. The comparison shows that the global fluid dynamics throughout the stirred tank and the local characteristics of trailing vortices near the blade tips can be captured by the SSG RSM. The predicted mean velocity components in axial, radial and tangential direction are also in good agreement with experiment data. The power number predicted is quite close to the designed value, which demonstrates that this model can accurately calculate the power number in the stirred tank. Therefore, the simulation by using a combination of SSG RSM and MRF impeller rotational model can accurately model turbulent fluid flow in the stirred tank, and it offers an alternative method for design and optimisation of stirred tanks.

关键词: stirred tank     fluid dynamics     numerical simulation     SSG Reynolds Stress Model     MRF    

Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

《能源前沿(英文)》 2010年 第4卷 第4期   页码 546-552 doi: 10.1007/s11708-010-0116-8

摘要: Forced convection heat transfer of single-phase water in helical coils was experimentally studied. The testing section was constructed from a stainless steel round tube with an inner diameter of 10 mm, coil diameter of 300 mm, and pitch of 50 mm. The experiments were conducted over a wide Reynolds number range of 40000 to 500000. Both constant-property flows at normal pressure and variable-property flows at supercritical pressure were investigated. The contribution of secondary flow in the helical coil to heat transfer was gradually suppressed with increasing Reynolds number. Hence, heat transfer coefficients of the helical tube were close to those of the straight tube under the same flow conditions when the Reynolds number is large enough. Based on the experimental data, heat transfer correlations for both incompressible flows and supercritical fluid flows through helical coils were proposed.

关键词: convective heat transfer     helical coils     high Reynolds number     supercritical pressure     variable property    

Study on wave rotor refrigerators

Yuqiang DAI, Dapeng HU, Meixia DING

《化学科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 83-87 doi: 10.1007/s11705-009-0075-y

摘要: As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are investigated based on the one-dimensional unsteady flow theory. A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

关键词: wave rotor     refrigeration     unsteady flow theory     wave diagram    

通过一个等价雷诺数揭示层流到湍流的转捩区域 Article

陈晓东

《工程(英文)》 2019年 第5卷 第3期   页码 576-579 doi: 10.1016/j.eng.2018.09.013

摘要:

Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is one of the most important research subjects in the history of engineering. Even for pipe flow, predicting the onset of turbulence requires sophisticated instrumentation and/or direct numerical simulation, based on observing the instantaneous flow structure formation and evolution. In this work, a local Reynolds number equivalence γ (ratio of local inertia effect to viscous effect) is seen to conform to the Universal Law of the Wall, where γ = 1 represents a quantitative balance between the abovementioned two effects. This coincides with the wall layer thickness (y+ = 1, where y+ is the dimensionless distance from the wall surface defined in the Universal Law of the Wall). It is found that the characteristic of how the local derivative of γ against the local velocity changes with increasing velocity determines the onset of turbulence. For pipe flow, γ  25, and for plate flow, γ 151.5. These findings suggest that a certain combination of γ and velocity (nonlinearity) can qualify the source of turbulence (i.e., generate turbulent energy). Similarly, a re-evaluation of the previous findings reveals that only the geometrically narrow domain can act locally as the source of turbulence, with the rest of the flow field largely being left for transporting and dissipating. This understanding will have an impact on the future large-scale modeling of turbulence.

关键词: 局部等价雷诺数     转捩     壁面律     管流     平板流动     建模    

Iteration framework for solving mixed lubrication computation problems

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 635-648 doi: 10.1007/s11465-021-0632-8

摘要: The general discrete scheme of time-varying Reynolds equation loses the information of the previous step, which makes it unreasonable. A discretization formula of the Reynolds equation, which is based on the Crank–Nicolson method, is proposed considering the physical message of the previous step. Gauss–Seidel relaxation and distribution relaxation are adopted for the linear operators of pressure during the numerical solution procedure. In addition to the convergent criteria of pressure distribution and load, an estimation framework is developed to investigate the relative error of the most important term in the Reynolds equation. Smooth surface with full contacts and mixed elastohydrodynamic lubrication is tested for validation. The asperity contact and sinusoidal wavy surface are examined by the proposed discrete scheme. Results show the precipitous decline in the boundary of the contact area. The relative error suggests that the pressure distribution is reliable and reflects the accuracy and effectiveness of the developed method.

关键词: mixed lubrication     discretization formula     relative error     Reynolds equation     asperity    

How far have we been? ―Summary of investigations on rotating cavity at IDG, RWTH Aachen University

Dieter BOHN, Jing REN,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 489-497 doi: 10.1007/s11708-009-0040-y

摘要: Annular cavities are found inside rotor shafts of turbomachines with an axial or radial throughflow of cooling air, which influences the thermal efficiency and system reliability of the gas turbines. The flow and heat transfer phenomena in those cavities should be investigated in order to minimize the thermal load and guarantee the system reliability. An experimental rig is set up in the Institute of Steam and Gas Turbines, RWTH Aachen University, to analyze the flow structure inside the rotating cavity with an axial throughflow of cooling air. The corresponding 3D numerical investigation is conducted with the in-house flow solver CHTflow, in which the Coriolis force and the buoyancy force are implemented in the time-dependent Navier-Stokes equations. Both the experimental and numerical results show that the whole flow structure rotating slower than the cavity rotating speed. The flow passing the observation windows in the experimental and numerical results indicates the quite similar trajectories. The computed sequences and periods of the vortex flow structure correspond closely with those observed in the experiment. Furthermore, the numerical analysis reveals a flow pattern changing between single pair, double pair, and triple pair vortices. It is suggested that the vortices inside the cavity are created by the gravitational buoyancy force in the investigated case, while the number and strength of the vortices are controlled mainly by the Coriolis force.

关键词: rotating cavity     buoyancy     unsteady flow    

Investigation of vortical flows over oscillating body using fast Lagrangian vortex method

Baoshan ZHU ,

《能源前沿(英文)》 2009年 第3卷 第3期   页码 297-306 doi: 10.1007/s11708-009-0010-4

摘要: A computational method facilitating long-time and high-resolution unsteady vortical flows is developed with the advantages of the discrete vortex methods. Both the velocity and pressure distribution of the flow field are calculated by integral formulations in combination with a fast summation algorithm. The vorticity field is described by Lagrangian representation, which is well suited to the moving boundary. Viscosity diffusion of the vorticity is considered with the core spreading model corrected by an adaptive splitting and merging algorithm. The effectiveness of the present method is examined by comparing the numerical results of unsteady separated flows which pass a cylinder and a thin cambered blade undergoing rotational oscillations with available experimental results. Interesting results about vortex shedding patterns and lock-in characteristics are provided for the thin cambered blade.

关键词: unsteady vortical flows     fast vortex method     vortex shedding     rotational oscillation     thin cambered blade    

Experiment and surge analysis of centrifugal two-stage turbocharging system

HE Yituan, MA Chaochen

《机械工程前沿(英文)》 2008年 第3卷 第4期   页码 365-368 doi: 10.1007/s11465-008-0073-7

摘要: To study a centrifugal two-stage turbocharging system’s surge and influencing factors, a special test bench was set up and the system surge test was performed. The test results indicate that the measured parameters such as air mass flow and rotation speed of a high pressure (HP) stage compressor can be converted into corrected parameters under a standard condition according to the Mach number similarity criterion, because the air flow in a HP stage compressor has entered the Reynolds number () auto-modeling range. Accordingly, the reasons leading to a two-stage turbocharging system’s surge can be analyzed according to the corrected mass flow characteristic maps and actual operating conditions of HP and low pressure (LP) stage compressors.

关键词: auto-modeling     compressor     Reynolds number     characteristic     standard condition    

标题 作者 时间 类型 操作

Numerical analysis of aerodynamic noise radiated from cross flow fan

CHEN Anbang, LI Song, HUANG Dongtao

期刊论文

URANS simulation of the turbulent flow in tight lattice bundle

Yiqi YU, Yanhua YANG

期刊论文

Optimum design of a channel roughened by dimples to improve cooling performance

Abdus SAMAD, Ki-Don LEE, Kwang-Yong KIM, Jin-Hyuk KIM,

期刊论文

Numerical analysis of 3-D unsteady flow in a vaneless counter-rotating turbine

ZHAO Qingjun, WANG Huishe, ZHAO Xiaolu, XU Jianzhong

期刊论文

Measurement and analysis of tip clearance unsteady flow spectrum in axial-flow fan rotor

LIU Bo, HOU Weimin, MA Changyou, WANG Yangang, ZHOU Qiang

期刊论文

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

期刊论文

Thermodynamic models and energy distribution of single-phase heated surface in a boiler under unsteady

Xiyan GUO, Yongping YANG

期刊论文

Numerical simulation of fluid dynamics in the stirred tank by the SSG Reynolds Stress Model

Nana QI, Hui WANG, Kai ZHANG, Hu ZHANG

期刊论文

Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds

Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG

期刊论文

Study on wave rotor refrigerators

Yuqiang DAI, Dapeng HU, Meixia DING

期刊论文

通过一个等价雷诺数揭示层流到湍流的转捩区域

陈晓东

期刊论文

Iteration framework for solving mixed lubrication computation problems

期刊论文

How far have we been? ―Summary of investigations on rotating cavity at IDG, RWTH Aachen University

Dieter BOHN, Jing REN,

期刊论文

Investigation of vortical flows over oscillating body using fast Lagrangian vortex method

Baoshan ZHU ,

期刊论文

Experiment and surge analysis of centrifugal two-stage turbocharging system

HE Yituan, MA Chaochen

期刊论文